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ON POSITION CONTROL IN DISTRIBUTED-PARAMETER SYSTEMS* 

A. I. KOROTKII and Iu. S. OSIPOV 

Position control problems under conditions of indeterminacy or conflict are stud- 

ied for certain classes of parabolic and hyperbolic systems. The problems are 

treated as differential games in suitable functional spaces/l-_/. Necessary and 

sufficient conditions for the solvability of the problems and a method for construct- 

ing the desired controls are indicated. Essential use was made of representation 

of the system's motion as a Fourier series when solving similar problems in /5-7/. 

In solving the problems being examined below arguments not relying on such a 

representation are used. This permits the consideration of certain new classes of 

distributed- parameter systems (in particular, those nonstationary and nonlinear 

in the phase variable) for which an analog of the well-known alternative proves 

valid and for which the controls solving the problem can be constructed as extremal 
strategies /l-44/. The article borders on the studies in /8-12/. 

1. We consider a controlled system whose state at each instant t from a prescribed in- 

terval It,, fi] is characterized by a scalar function Y(t, .)=Y(t,, z) defined in a domain n 

of space R", n > 1, with boundary r. The system is subject to the control u = u (t, z) and 

the noise v = v (t, x) with constraints u (t, .) E P (t) and u (t, .) E G (t), where P (t) and G (t) 
are certain collections of vector-valued functions defined on s2. The system's dynamics are 

described by the relations 

y, = -& ( aij (b 4 +- 1 $ f (t, 2, y, 21, u) in Q = (to, 0) x R 
(1.1) 

u1 -$ + u2 (t, x) y = 0 in Z = (t, 6) x r (1.2) 

Y (to, 4 = y,lnQ (1.3) 

Under the constraints specified on the resources of u and v we are asked to find a method 

for forming the control u(~)by the feedback principle uIt]= u (t, z, Y [t, .I) (u [tl = v (t, r, 

Y It, .I)), ensuring (excluding) the transition of system (l-l)- (1.3) into a specified state 

set under any admissible realizations of control L' (U), the prescribed phase contraints being 

observed during the transition. 
Let us specify the problem statement. We take it that the sets Q, r, p (l), G(t) and the 

functions Uij satisfy the constraints indicated in /6/, the coercivity condition is fulfilled 

uniformly in t, and that aa,j/at E La(Q). We assume as well that function f is measurable 

in (t, 2) on (to, 0) X B and is continuous in (y, u, V) on R X Rm* X R”‘,, that for every choice 

of u E P (to, 6) and v E G(t,, 6) the function f(t,x, y, u, u) satisfies a Lipschitz condition 

in Y for almost all (t, z), and that f (t, x, 0, u, u) E L, (Q) and II f (k x7 0, u, 4 llL?(Q, < c 

(the Lipschits constant and G are independent of the choice of u and u). We assume further 

that s1 is either 0 or 1 and that function 

where (#I is CI" 
u2 = 1 when u1 = 0; &J, / at E L, (Z), u, > 0; y, E Q,, 

0,z (Q) when ISI = 0 and is W,l(Q) when 'Jo == 1. Here P (tl, t2) (G (tl, t2)) is the 
set of all functions t+ P (t) (G (t)) measurable on [tl, &I G [to, 6) . According to thetheorem 
on the measurable selection these sets are nonempty /13/. Measurability and integrability is 
everywhere understood in the Lebesgue sense; derivatives are understood in the generalized 
sense (see /14-16/, for instance). 

A rule U that associates some nonempty subset U (tl, 

{tt, t,, y}, to < t1 < t2 < 6, y E &T (Q), 
t,, y) 5 P (tl, t2) with every triple 

is called a strategy. 
It,, 0) by points t, = r0 < . . < zm = 6, 

Let A be a finite partitioning of 
dh = maxi (ti+l - ri). A motion ‘Y ltla = y [t; to, yll, Ul,, 

to< t,<s, of system (l.l)- (1.3) from position {to, Y0}, corresponding to strategy u and 
partitioning A, is the name given to every function y [t]& from W&(Q) when s1 = 0 and from 

pFyl(Q) when 61 = 1, equalling Y, when t = t, and satisfying the identity 

c 
b 
( @I It’ A at9 

'y ['IA at] 
$aij ra dxdt+~l Uzy[t]AI]drdt = ‘f(t,x,y[t]a,~[t],~[t])~d~dt 

1 =I 1 F 
i 

a 
Q 

for every function n of the same class as 

on each interval [pi, ~~+r) . 
Y [tl,; ~1.1 E U (ti, ti+l, y [~;]a) and 17 [.I EG (Ti, T~+I) 

It can be shown that the set ofmotions introduced is nonempty 
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/14--16/ and that the function Y JlJ,, is continuous with respect to tEJIto,XyJ in the weak 
topology of 0. 

By Y (t; to, ~0, u, v) we denote the program motion corresponding to the initial position 
{to, Y,} and to the functions u E P (t,, 8) and v E G (t0,6). The strategy V and the motions 
corresponding to parameter v are defined analogously. Let M and N be sets from Ito, x 0. 
The original control problems can now be stated as follows /6/. 

Problem 1.1. Construct a strategy U with the property: for any number s>O a 
number 6 >O can be found such that the contact condition 

P ({t*,Y J~*JA), W st iTLDI(I t, - tJ2 + JJ y Jt,J&-- ZIJL,P)"~SE, 
$2 

P ({.c* Y Jrl.%I. N) < E, to <t < t, 

is fuLfilled at some instant t, = t (Y [.I&) E ItO, 61 for each motion 
dA<S. 

Y JtJa = Y It; t,, Yc, Ul, with 

Problem 1.2. Construct a strategy V with the property: numbers E) 0 and a>0 
existsuch that the contact condition is not fulfilled for each motion 
with dA<6. 

Y Mb = Y It; to, Y0, VI, 

We indicate solvability conditions for the problems and a method for constructing the 
strategiesdesired. 

Condition 1.1. If the sequences (LQ} and {vg) converge weakly to u and 1: in L,(Jt0,61; 
Lk* (Q)) and L, ([to, @J; Am?, (Q)), respectively, then from {Y (t; &,, yO, ?ikr ~~1) we can pick out a 

subsequence converging to Y (t; tu, y,, U, U) in C (ItO, 61; L, (Q)). 

Condition 1.2. The following condition is fulfilled (see /'3/j: 

for any tland tz, to < tl< t, < 6, z and y from 4 (Q) - 
Let K be some set from [&,, @J x @. By the symbol u" we denote a strategy (and we say 

that is is extremal to K) of the following kind. If the section K (tl) = a, then U" (6, t,, y) 
is an arbitrary subset from P(tl, te). If g (tr) f a, then Ue (tl, &, y) = (u"}, where zbe is a 
function with the property: sequences {%fc P (tl, tB) 
- yk /IL, = id {II Y --,z 11~~ ]z E K (h)) , uk --f 12 

and {Ye} c: K (tl) exist such that limii JJ Y 

weakly inlz L, (itI, &I; Lmf2 (Q)), and 

Z:r$Y- 
Yk, f (t, x, yk, LIP, zhdt = p(ic,il) ~,a~is{Y-Bhrf(tr~,y~,IL~U))qdt min 

8 t 
Strategy VP is defined analogously. By the symbol ' v,' we denote a strategy V that is upper- 
semicontinuous with respect to variation of Y in the metric of L, (8), Let W = W(M, N) be 
the set of all pairs (t, y) from I&,, $1 X @, from which, as from the initial pairs, Problem 
1.2 is unsolvable in the class of strategies V,. 

Theorem 1.1. When conditions 1.1 and 1.2 are fulfilled either Problem 1.1 or Problem 
1.2is solvable from every initial position {to? Y,). Problem 1.1 (1.2) is solvable if and 

only if {t Y4 E JV ({tctV Y,) 6G W). 

2. Let us consider a controlled system whose state at each instant t of the interval 
It,, Sl is characterized by a scalar function Y(t, .)=Y(t, 2) defined in Q and by the rate 
~~(2, a)= ~y(~,~)/~~ of variation of this function. The system is subject to acontrol u = u(t) 
and a noise u = v(t) with constraints u(t)E P and u(t)~G, where P and G are convex compacta 
in R"'l and Rrnz+ respectively. The system's dynamics are described by the relations 

(2.1) 

oi+-ozy=O in Z (2.21 

Y (to, 5) == yo, yt (to, .T) = Y; imB (2.3) 

w’ = g (f, I(‘, u, D), w (to) = co@ (2.4) 

Under the constraints prescribed on the resources of u and V we are asked to find a method 
for forming the force II(U) by the feedback principle 

u 111 = u (6 Y Jt,. .I, Yt If, .I), (u IfI -7 v (f, y [f, .I, Yl It, .l)) 

ensuring (excluding)the transition of the system's state into a specified set, the prescribed 
phase constraints being observed during the transition. 

Let us specify the problem statement. We take it that the following conditions are 
fulfilled: the ail satisfy the constraints from /6/; eland cz are constants, 010, = 0; R E 

C([&,,fiJ j< R* x p x G) and locally satisfies a Lipschitz condition in tu (see /3/); for every 
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choice of measurable functions U= U(m) and L'= n(e) with constraints II (t) E P and 0 (t1 fzE G 

and for almost all tE]t,, SJ (the sets of all such functions are denoted p(to, 6) and G@o, @f 
respectively) the absolutely continuous solutions u'(t) of system (2.4) are continuable onto 
[to, @J and are uniformly bounded in C (It,, @I; R”’ , YO fE @, 5’1 E Lz (a). We assume that func- 
tion f(t, z, Y, p, q, 20) is continuous in all variables on J$, *J X CJ X R X R"xR x Rm,has con- 
tinuous derivatives 8f J St, c3f / dy, 8f / +I,~, df J 34, af J&k, 
when ft, P, W) E It,, 81 x 9 % D, D 

If (C I% 0, 0, 0, ut) j < fo (z) E L, (52) 
is a bounded set in R", and 

_. 
where L and cl,..., cq are absolute constants. 

For chosen YO, Y1, ZQ, u and v, by a solution of (2.1)- (2.3) we mean a function Y ItI= 
Y It, s; to, Y,. YI, q, u, ~1 from W’,“*“(@ n wi,, (0) when q = 0 and from b&?'(a) when 0, = 0, 
satisfying (2.3) and the integral identity 

(2.5) 

for every function q of the same class as y JtJ;w It1 is a solution of (2.4). The set of 
solutions introduced is nonempty /14-16/, and 

Y It] E c (I&?, 61; at), Y itJt E c (I&, 61; Lz ($2)) 
Let R be the space ji X &.(Q) X R”’ with norm II {Y, YI, ~4 II = (II y ll<p’ -i- II yf I/L? -I-, II w Ii$lt'J. 

A rule 17 that associates some nonempty subset u(t, h)c p with every Pair {t, h}, to< 

t Q 6, k EH. is called a strategy. A function 

2 JtJa = z Jt; to, h,, Ul, = (Y ItI&, Y ItI.& t, < t< 6 
where Y iti& satisfies (2.5) , is called a motion of the system from the position it,, M, h, = 

fY0, Yl? %I> corresponding to strategy U and to partitioning A; and on Iri, 'tiflj 

u [.I = u E U (.ti> {Z [~tl~r w irila)), v [.I EG (to, 8) 
Strategy V and the motion corresponding to parameter v are defined analogously. suppose 
that sets A+' and N are specified in It,, 91 x @ x Lz (Q). The original problems can be form- 
alized in the following manner. 

Problem 2.1. Construct a strategy U with the property; for any s>O a number 
&>O can be found such that the contact condition 

p((&, 5 Jt*]Aj,~~)~i~~M(I f* -tJ'+ 11 Y[&J -YJJo*+ 11 Y[&JAf -Yl I&)"' <s) p (('7 ' J7JA), N, g Ed to < 7 < & 

is fulfilled at'some instant t, = t (z [.I&) E [to, 61 for each motion a \tJa = z It; to? ho, Ulb with 

dd,<b. 

Problem 2.2. Construct a strategy V with the property: numbers E>O and 6>0 
can be found such that the contact condition is not fulfilled for each motion z [t]& = z It; to, h,, 
VIA with dA < 6. 

We state the main results. 

Condition 2.1. If P (to, 6) 3 uk + u E P (to, tt) weakly in L, ftt,, 61; R”s) and G (t,, 6) 3 
nk + Y E G f&,, 6) weakly in _Lz ([t,,, 61; PC*) , 

u, VI, w It; fo, ho, U, vJ) in C ([to, 01; R). 
then fz.ft: t,, ho, oh-. ~1, w Et; to, ho, z+, vkl) - {z If; to. 

h,,% 

Condition 2.2. The saddle point condition 

r$n meax (s, g (t, uj, U, v)>,n=meax m,'n (s,g(i,w,~,u))e~~ 

is fulfilled for any t~[t,, @] and for S and w from Rm. 
Let K be some set from [to,fil x H. By the symbol U" we denote a strategy (and we say 

that it is extremal to K)of the following kind. If the section K(t) = $, , then lJe(l, k) is 
an arbitrary subset from P, If K(t)+@, then V” (t, k) = {d} z P, where ue possesses 
the property: sequences {u~}.c~ and (ha) C K(t) exist such that 

I'," J/h -.. hi J/H = $n& JJ h -q I/H, 8~. -y I&' inR"g, max (w-z+, g (t,w, ui,,v)>am ==minmar <uJ -2ok, g(t,w, u,v>iim 

Strategy V” is defined analogously. Let e%'= w(M, N) be the set zf a"11 pairs {t, k) from 
[to, 141 x H, from which, as from the initial pairs, Problem 2.2 is unsolvable in the class of 
strategies V,, where VO is a strategy 1/ upper-semicontinuous with respect to the variation 
of h in the metric of R. 

Theorem 2.1. When Conditions 2.1 and 2.2 are fulfilled either Problem 2.1 or Problem 
2.2 is solvable from every initial position {to, k,t . Problem 2.1 (2.2) is solvable if and 

only if {to, h,) E w({tO,k,) S& W)+ 

3. Games on theminimax-maximinof a functional ((,(Y JSJ) (or of functionals reducing 
to such; see Chapter 4 in /3/j continuous in the system's phase space, as an example, can be 
reduced to the differential games we have considered. In this connection an alternative 
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statement analogous to /3/ holds, and the optimal minimax and maximin strategies can be con- 
structed as strategies extremal to certain stable bridges /3/. 

In conclusion we indicate the possibility of approximating the problems considered by 
certain finite-dimensional systems. An approximation based on the Galerkin method, on the 
method of lines (i.e., the discretization is implemented only along the one variable I ), 

or on the difference method with a scheme analogous to that in /11/ is possible for the 
problems from Sect.1. An approximation based on the Galerkin method or on the method of 
lines is possible for the problems Erom Sect.2. Approximation theorems analogous to those 

in /ll/ hold; their sense is as follows: with any preassigned accuracy t: >I) we can find 

the appropriate approximation and a control method for the original system (projected from 

the strategy solving the corresponding problem for the given approximation), which lead to 
the solving of the original problem with accuracy E. 

Notes. lo. Under the constraints indicated on the parameters of system (l.l)- (1.3) 

the bundle of trajectories {Y (f; tO, YD, U, r); starting from position (to,YO] and corresponding to 

all possible controls u E P ((0, @) and u E C (to, 8) is precompact in C ([lo, fit]; L,(Q)). Therefore, for 

the fulfillment of Condition 1.1 it is sufficient that function / possess the property: for 

every fixed function Y ez C(IlO. 61; L,(Q)) theweak convergenceof sequences (q) and (Q) to 'U and u 
respectively,impliesthe convergenceweakin &(c)) of sequence (f(l. r. Y. Uk, 7.h_)) to j (I, =, Y, 11. I-). 'I'h; 

bundle of trajectories of system (2.1)- (2.4)isprecompactinC([t,,*l;11).Forthe fulfillment of 

Condition 2.1 it is sufficient that the weak convergence of (uh-) and {?h-) to u and <, 
respectively, imply the convergence of solutions (71, 11; t,, 710, “h_, q]) to 7,’ II; to. wg, u, ?I in (‘ ([lo. ii]; 
Nm) and that boundary ~‘EC* when % -II. See /3/ on the matter of the fulfillment of con- 

ditions of type 1.2 and 2.2. 

2'. Problem 1.1 (2.1) is solved by a strategy (ie extremal, for example, to set W(j Z(I~), 

where Z is the bundle of trajectories starting from an initial position and corresponding 

to all possible admissible controls !I and u. Problem 1.2 (2.2) too can be solved by a 

strategy Fe extremal, for example, to the bundle of all motions generated by strategy 1., 

solving Problem 1.2 (2.2) (see the definition of set W). 

3'. If Condition (2.1) is not fulfilled, then the assertion of Theorem 1.1 (2.1) re- 

mains valid, but Problem 1.1 (2.1) or Problem 1.2 (2.2) is now solved by a strategy "extremal" 

to a certain sequence of stable bridges inbedded one into the other /7.12/. 

4'. If the bundles of trajectories of system (l-l)- (1.3) are precompact inC==([tO,fi];@), 

then from the assertion of Theorem 1.1 follows the alternative in game 1.1-l-2, where the 

distance to the set is measured in the metric induced by the metric in '5. This fact can be 

proved analogously as in /6,7/. If 

02 = 02 (Z), CZij = flij (3) a (I), 0 < U. < a (t) < BJ I - fi (L =9 Y) + fz (J> Y) u (I) f f3 (5, Y) U(f) 

where functions firf2 and f3 satisfy a Lipschitz condition in Y, then under the fulfillment 

of certain regularity conditions /6,7,14,15/ the solutions of (l.l)- (1.3) are compact in 

c ([lo, Sl; a,) 

5'. For certain classes of systems of form (l.l)- (1.3) analogous results are valid 

for the case of boundary controls 

dy / a3 + CT) (z) g jr -: b (ri u (0 + c (4 n (d + g (4 
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